T cell receptor BV gene rearrangements in the spinal cords and cerebrospinal fluid of patients with amyotrophic lateral sclerosis.
Academic Article
Overview
abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disorder whose etiology and pathogenesis remain unknown. Recent studies, however, have demonstrated the presence of inflammatory infiltrates within ALS spinal cord and suggested the possibility of an immune-mediated process in motor neuron degeneration. We have analyzed the diversity of T-cells in the spinal cord in ALS. Reverse transcriptase polymerase chain reaction (RT-PCR) with variable (V) region sequence specific oligonucleotide primers was used to amplify T-cell receptor (TCR)BV transcripts from spinal cords obtained at autopsy from patients with ALS, patients who died without inflammatory disease of the central nervous system, brains from patients with ALS, and brains from patients who died with inflammatory CNS disease. Sequencing was then performed on the amplified transcripts. An overall increase in the level of TCRBV 2 transcripts was detected in ALS specimens when compared to controls. This result was independent of the HLA genotype of the individual. Furthermore, enrichment of TCRBV2-positive T cells could be demonstrated in cerebrospinal fluid derived from patients with ALS, using PCR analysis and a T cell stimulation assay with toxic shock syndrome toxin-1 (TSST-1), a Vbeta2-specific superantigen. Our results suggest that an immunological process involving the specific expansion of Vbeta2 TCR-positive T-cells may be important in the pathogenesis of ALS.