Tumor antigen presentation by dermal antigen-presenting cells. Academic Article uri icon

Overview

abstract

  • Several phenotypes of antigen-presenting cells are present in the dermis, where they presumably function to present encountered antigens for immune responses. This study examined the ability of dermal antigen-presenting cells to present tumor-associated antigens for the induction of in vivo antitumor immunity. Total murine dermal cells were exposed either to medium alone or to medium containing tumor-associated antigens from S1509a tumor cells. Subsequently, dermal cells were injected subcutaneously at weekly intervals into naïve mice for a total of three immunizations. One week following the final immunization, mice were challenged with living tumor cells. In these experiments, dermal cells pulsed with tumor-associated antigens induced protective immunity to tumor growth. Dermal cells exposed to tumor-associated antigens were also able to elicit delayed-type hypersensitivity after footpad injection into mice previously immunized against S1509a tumor cells. The ability to present tumor-associated antigens for both induction of antitumor immunity and elicitation of delayed-type hypersensitivity was dependent on I-A+ cells and was genetically restricted. Finally, dermal cells tended towards eliciting a greater antitumor delayed-type hypersensitivity response than epidermal cells. These results show that the murine dermis contains antigen-presenting cells capable of processing S1509a tumor antigens for the generation of protective antitumor immunity in vivo.

publication date

  • July 1, 2000

Research

keywords

  • Antigen-Presenting Cells
  • Antigens, Neoplasm
  • Skin

Identity

Scopus Document Identifier

  • 0033941982

Digital Object Identifier (DOI)

  • 10.1046/j.1523-1747.2000.00014.x

PubMed ID

  • 10886508

Additional Document Info

volume

  • 115

issue

  • 1