The molecular control of upper extremity development: implications for congenital hand anomalies.
Review
Overview
abstract
As the molecular aspects of limb development are being unraveled, more of the congenital anomalies seen by hand surgeons in the clinical setting will have an identifiable molecular basis. The majority of the data available regarding the molecular development of the upper extremity have come from experimental animal studies, specifically the mouse and chicken. These findings are being discovered by either direct surgical and molecular manipulation of the developing limb or by production of mice deficient in specific genes. Relatively few specific human mutations that cause limb abnormalities have been identified. Hand surgeons should be aware of the basic molecular pathways controlling limb development because they are in a unique position to be able to identify patients with such deformities. In turn, detailed clinical descriptions of congenital anomalies affecting the upper extremity will advance the understanding of the cellular events controlled by the molecular pathways of limb development. This review describes the general molecular basis of limb development and correlates it with disease processes affecting the upper extremity.