Domain structure of the HSC70 cochaperone, HIP. Academic Article uri icon

Overview

abstract

  • The domain structure of the HSC70-interacting protein (HIP), a 43-kDa cytoplasmic cochaperone involved in the regulation of HSC70 chaperone activity and the maturation of progesterone receptor, has been probed by limited proteolysis and biophysical and biochemical approaches. HIP proteolysis by thrombin and chymotrypsin generates essentially two fragments, an NH2-terminal fragment of 25 kDa (N25) and a COOH-terminal fragment of 18 kDa (C18) that appear to be well folded and stable as indicated by circular dichroism and recombinant expression in Escherichia coli. NH2-terminal amino acid sequencing of the respective fragments indicates that both proteases cleave HIP within a predicted alpha-helix following the tetratricopeptide repeat (TPR) region, despite their different specificities and the presence of several potential cleavage sites scattered throughout the sequence, thus suggesting that this region is particularly accessible and may constitute a linker between two structural domains. After size exclusion chromatography, N25 and C18 elute as two distinct and homogeneous species having a Stokes radius of 49 and 24 A, respectively. Equilibrium sedimentation and sedimentation velocity indicate that N25 is a stable dimer, whereas C18 is monomeric in solution, with sedimentation coefficients of 3.2 and 2.3 S and f/f(o) values of 1.5 and 1.1 for N25 and C18, respectively, indicating that the N25 is elongated whereas C18 is globular in shape. Both domains are able to bind to the ATPase domain of HSC70 and inhibit rhodanese aggregation. Moreover, their effects appear to be additive when used in combination, suggesting a cooperation of these domains in the full-length protein not only for HSC70 binding but also for chaperone activity. Altogether, these results indicate that HIP is made of two structural and functional domains, an NH2-terminal 25-kDa domain, responsible for the dimerization and the overall asymmetry of the molecule, and a COOH-terminal 18-kDa globular domain, both involved in HSC70 and unfolded protein binding.

publication date

  • October 30, 2001

Research

keywords

  • Molecular Chaperones

Identity

Scopus Document Identifier

  • 0037016663

Digital Object Identifier (DOI)

  • 10.1074/jbc.M106881200

PubMed ID

  • 11687574

Additional Document Info

volume

  • 277

issue

  • 1