Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells.
Academic Article
Overview
abstract
B cell-derived chronic lymphocytic leukemia (B-CLL) represents a common malignancy whose cell derivation and pathogenesis are unknown. Recent studies have shown that >50% of CLLs display hypermutated immunoglobulin variable region (IgV) sequences and a more favorable prognosis, suggesting that they may represent a distinct subset of CLLs which have transited through germinal centers (GCs), the physiologic site of IgV hypermutation. To further investigate the phenotype of CLLs, their cellular derivation and their relationship to normal B cells, we have analyzed their gene expression profiles using oligonucleotide-based DNA chip microarrays representative of approximately 12,000 genes. The results show that CLLs display a common and characteristic gene expression profile that is largely independent of their IgV genotype. Nevertheless, a restricted number of genes (<30) have been identified whose differential expression can distinguish IgV mutated versus unmutated cases and identify them in independent panels of cases. Comparison of CLL profiles with those of purified normal B cell subpopulations indicates that the common CLL profile is more related to memory B cells than to those derived from naive B cells, CD5(+) B cells, and GC centroblasts and centrocytes. Finally, this analysis has identified a subset of genes specifically expressed by CLL cells of potential pathogenetic and clinical relevance.