Whole-body biodistribution, radiation absorbed dose, and brain SPET imaging with [123i]5-i-A-85380 in healthy human subjects. Academic Article uri icon

Overview

abstract

  • The biodistribution of radioactivity after the administration of a new tracer for alpha4beta2 nicotinic acetylcholine receptors (nAChRs), [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), was studied in ten healthy human subjects. Following administration of 98+/-6 MBq [123I]5-I-A-85380, serial whole-body images were acquired over 24 h and corrected for attenuation. One to four brain single-photon emission tomography (SPET) images were also acquired between 2.5 and 24 h. Estimates of radiation absorbed dose were calculated using MIRDOSE 3.1 with a dynamic bladder model and a dynamic gastrointestinal tract model. The estimates of the highest absorbed dose (microGy/MBq) were for the urinary bladder wall (71 and 140), lower large intestine wall (70 and 72), and upper large intestine wall (63 and 64), with 2.4-h and 4.8-h urine voiding intervals, respectively. The whole brain activity at the time of the initial whole-body imaging at 14 min was 5.0% of the injected dose. Consistent with the known distribution of alpha4beta2 nAChRs, SPET images showed the highest activity in the thalamus. These results suggest that [123I]5-I-A-85380 is a promising SPET agent to image alpha4beta2 nAChRs in humans, with acceptable dosimetry and high brain uptake.

authors

  • Fujita, Masahiro
  • Seibyl, John P
  • Vaupel, D Bruce
  • Tamagnan, Gilles
  • Early, Michele
  • Zoghbi, Sami S
  • Baldwin, Ronald M
  • Horti, Andrew G
  • KoreN, Andrei O
  • Mukhin, Alexey G
  • Khan, Shaukat
  • Bozkurt, Ali
  • Kimes, Alane S
  • London, Edythe D
  • Innis, Robert B

publication date

  • February 1, 2002

Research

keywords

  • Azetidines
  • Brain
  • Iodine Radioisotopes
  • Pyridines
  • Radiopharmaceuticals
  • Receptors, Nicotinic

Identity

Scopus Document Identifier

  • 0036169966

Digital Object Identifier (DOI)

  • 10.1007/s00259-001-0695-z

PubMed ID

  • 11926380

Additional Document Info

volume

  • 29

issue

  • 2