Suppression of nuclear factor-kappa B activity by nitric oxide and hyperoxia in oxygen-resistant cells. Academic Article uri icon

Overview

abstract

  • Inhaled nitric oxide (iNO) is used clinically to treat pulmonary hypertension in newborns, often in conjunction with hyperoxia (NO/O2). Prolonged exposure to NO/O2 causes synergistic lung injury and death of lung epithelial cells. To explore the mechanisms involved, oxygen-resistant HeLa-80 cells were exposed to NO +/- O2. Exposure to NO and O2 induced a synergistic cytotoxicity, accompanied with apoptotic characteristics, including elevated caspase-3-like activity, Annexin V incorporation, and nuclear condensation. This apoptosis was associated with a synergistic suppression of NF-kappaB activity. Cells lacking functional NF-kappaB p65 subunit were more sensitive to NO/O2 than their wild type counterparts. This injury was partially rescued by transfection with a p65 expression construct, suggesting an inverse relationship between NF-kappaB and susceptibility to the cytotoxicity of NO/O2. Despite the reduced NF-kappaB activity in cells exposed to NO +/- O2, IkappaBalpha was degraded, suggesting that pathways regulating the steady-state levels of IkappaB were not involved. However, exposure to NO/O2 caused a marked reduction in nuclear localization and an increase in protein carbonyl formation of NF-kappaB p65 subunit. These results suggest that NO/O2-induced apoptosis occurs by suppressing NF-kappaB activity.

publication date

  • September 4, 2002

Research

keywords

  • NF-kappa B
  • Nitric Oxide
  • Oxygen

Identity

Scopus Document Identifier

  • 18644373283

Digital Object Identifier (DOI)

  • 10.1074/jbc.M202623200

PubMed ID

  • 12215428

Additional Document Info

volume

  • 277

issue

  • 45