Sequential activation of caspases and serine proteases (serpases) during apoptosis. Academic Article uri icon

Overview

abstract

  • Analogous to caspases, serine (Ser) proteases are involved in protein degradation during apoptosis. It is unknown, however, whether Ser proteases are activated concurrently, sequentially, or as an alternative to the activation of caspases. Using fluorescent inhibitors of caspases (FLICA) and Ser proteases (FLISP), novel methods to detect activation of these enzymes in apoptotic cells, we demonstrate that two types of Ser protease sites become accessible to these inhibitors during apoptosis of HL-60 cells. The prior exposure to caspases inhibitor Z-VAD-FMK markedly diminished activation of both Ser protease sites. However, the unlabeled inhibitor of Ser-proteases TPCK had modest suppressive effect- while TICK had no effect- on the activation of caspases. Activation of caspases, thus, appears to be an upstream event and likely a prerequisite for activation of FLISP-reactive sites. Differential labeling with the red fluorescing sulforhodamine-tagged VAD-FMK and the green fluorescing FLISP allowed us to discriminate, within the same cell, between activation of caspases and Ser protease sites. Despite a certain degree of co-localization, the pattern of intracellular caspase- vs FLISP- reactive sites, was different. Also different were relative proportions of activated caspases vs Ser protease sites in individual cells. The observed induction of FLISP-binding sites we interpret as revealing activation of at least two different apoptotic Ser proteases; by analogy to caspases we denote them serpases. Their apparent molecular weight (62-65 kD) suggests that they are novel enzymes.

publication date

  • January 1, 2002

Research

keywords

  • Amino Acid Chloromethyl Ketones
  • Apoptosis
  • Caspases
  • Serine Endopeptidases
  • Serine Proteinase Inhibitors

Identity

Scopus Document Identifier

  • 0036491433

PubMed ID

  • 12429921

Additional Document Info

volume

  • 1

issue

  • 2