Alpha 4 integrin increases anoikis of human osteosarcoma cells. Academic Article uri icon

Overview

abstract

  • Cell motility, growth, and proliferation are regulated by adhesion to the extracellular matrix. Detachment of adherent cells from extracellular matrix results in induction of apoptosis ("anoikis"). Transformed cells often show an anchorage-independent growth that enables them to acquire a motile, invasive phenotype. This phenotype has been associated with the altered expression and function of the integrin family of transmembrane proteins that mediate cell adhesion to the extracellular matrix. Although alpha4 integrin is normally expressed on leukocyte subpopulations, a number of metastatic melanomas and sarcomas express it as well. In this study, we demonstrated the expression of alpha4 integrins on the human osteosarcoma cell line SAOS and on metastatic osteosarcoma lesions from the lung and pericardium. We further demonstrated that alpha4 integrin is coupled to the beta1 subunit by biochemical analysis and by using a mAb directed against a combinatorial epitope unique to the alpha4beta1 molecule. SAOS cells undergo anoikis when adherence is denied. Anoikis involved the activation of caspase 3 and the release of cytochrome c from mitochondria. Treatment of non-adherent SAOS with an anti-alpha4 mAb increased anoikis while anti-beta1 integrin mAbs did not alter anoikis, thus indicating a novel function for the alpha4 subunit in the control of cell death. Since integrins can control cell migration, proliferation, and apoptosis these results demonstrate a potential role for alpha4 integrin during multiple aspects of osteosarcoma metastasis.

publication date

  • April 1, 2003

Research

keywords

  • Anoikis
  • Heart Neoplasms
  • Integrin alpha4
  • Lung Neoplasms
  • Osteosarcoma

Identity

Scopus Document Identifier

  • 0037377256

Digital Object Identifier (DOI)

  • 10.1002/jcb.10465

PubMed ID

  • 12616540

Additional Document Info

volume

  • 88

issue

  • 5