Diminished heme oxygenase potentiates cell death: pyrrolidinedithiocarbamate mediates oxidative stress. Academic Article uri icon

Overview

abstract

  • Pyrrolidinedithiocarbamate (PDTC) is a metal-chelating compound that exerts both pro-oxidant and antioxidant effects and is widely used as an antitumor and anti-inflammatory agent. Heme oxygenase-1 (HO-1) is a redox-sensitive-inducible protein that provides efficient cytoprotection against oxidative stress. Because it has been reported that several angiogenic stimulating factors upregulating HO-1 in endothelial cells cause a significant increase in angiogenesis, we investigated the effect of PDTC on cell proliferation and angiogenesis and the effect of overexpression and underexpression of HO-1. The evaluation of PDTC (20 or 50 micro M) in endothelial cells resulted in significant increase in HO-1 mRNA and protein (P < 0.001), but a decrease in cell proliferation. Pretreatment of endothelial cells with SnCl(2) (10 micro M), an inducer of HO-1 attenuated the PDTC-mediated decrease in cell proliferation (P < 0.05). In contrast, pretreatment with SnMP, an inhibitor of HO activity, magnified the inhibiting effect of PDTC on cell proliferation. Upregulation of HO-1 gene expression by retrovirus-mediated delivery of the human HO-1 gene also attenuated the PDTC-induced decrease in cell proliferation. Underexpression of HO-1, by delivery of the human HO-1 in antisense orientation, enhanced the PDTC-mediated decrease in cell proliferation. The decrease, by PDTC, in proliferation of cells underexpressing HO-1 is related to an increase in O(-)(2) production. Collectively, these results demonstrate that upregulation of HO-1 was able to attenuate the PDTC-mediated cell proliferation, but was unable to reverse the high concentration of PDTC-induced decrease in angiogenesis.

publication date

  • May 1, 2003

Research

keywords

  • Antioxidants
  • Cell Death
  • Endothelium, Vascular
  • Heme Oxygenase (Decyclizing)
  • Oxidative Stress
  • Pyrrolidines
  • Thiocarbamates

Identity

Scopus Document Identifier

  • 0038545227

Digital Object Identifier (DOI)

  • 10.1177/15353702-0322805-06

PubMed ID

  • 12709569

Additional Document Info

volume

  • 228

issue

  • 5