Measurement of intramyocellular lipid levels with 2-D magnetic resonance spectroscopic imaging at 1.5 T. Academic Article uri icon

Overview

abstract

  • Intramyocellular lipid (IMCL) plays an important role in the study of metabolism in vivo. Magnetic resonance spectroscopy (MRS) studies of IMCL are usually performed with clinical 1.5-T magnetic resonance imaging (MRI) systems and have employed the single-voxel MRS technique. The present study reports the results of our systematic evaluation of the ability of single- and multi-voxel MRS to yield high-quality, contamination-free IMCL levels from the tibialis anterior (TA) muscle. A clinical, 1.5-T, whole-body MRI scanner was used to measure IMCL with a standard knee coil, head coil, or a 3-cm receive-only surface coil with a body coil transmit. Excellent IMCL spectra were obtained in healthy males in only 8 min from multiple 0.25-cm(3) voxels using the surface coil receive/body coil transmit in conjunction with the standard PRESS spectroscopic imaging (SI) technique. This approach provided the spatial resolution and voxel placement flexibility permitting optimal separation of IMCL and extramyocellular lipid. Our findings demonstrate the potential of the SI approach.

publication date

  • October 1, 2003

Research

keywords

  • Lipid Metabolism
  • Magnetic Resonance Spectroscopy
  • Muscle, Skeletal

Identity

PubMed Central ID

  • PMC1894645

Scopus Document Identifier

  • 0142209265

Digital Object Identifier (DOI)

  • 10.1007/s00592-003-0026-x

PubMed ID

  • 14618433

Additional Document Info

volume

  • 40 Suppl 1

issue

  • Suppl 1