Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Academic Article uri icon

Overview

abstract

  • Impulse-conducting Purkinje fibers differentiate from myocytes during embryogenesis. The conversion of contractile myocytes into conduction cells is induced by the stretch/pressure-induced factor, endothelin (ET). Active ET is produced via proteolytic processing from its precursor by ET-converting enzyme 1 (ECE1) and triggers signaling by binding to its receptors. In the embryonic chick heart, ET receptors are expressed by all myocytes, but ECE1 is predominantly expressed in endothelial cells of coronary arteries and endocardium along which Purkinje fiber recruitment from myocytes takes place. Furthermore, co-expression of exogenous ECE1 and ET-precursor in the embryonic heart is sufficient to ectopically convert cardiomyocytes into Purkinje fibers. Thus, localized expression of ECE1 defines the site of Purkinje fiber recruitment in embryonic myocardium. However, it is not known how ECE1 expression is regulated in the embryonic heart. The unique expression pattern of ECE1 in the embryonic heart suggests that blood flow-induced stress/stretch may play a role in patterning ECE1 expression and subsequent induction of Purkinje fiber differentiation. We show that gadolinium, an antagonist for stretch-activated cation channels, downregulates the expression of ECE1 and a conduction cell marker, Cx40, in ventricular chambers, concurrently with delayed maturation of a ventricular conduction pathway. Conversely, pressure-overload in the ventricle by conotruncal banding results in a significant expansion of endocardial ECE1 expression and Cx40-positive putative Purkinje fibers. Coincident with this, an excitation pattern typical of the mature heart is precociously established. These in vivo data suggest that biomechanical forces acting on, and created by, the cardiovascular system during embryogenesis play a crucial role in Purkinje fiber induction and patterning.

publication date

  • January 7, 2004

Research

keywords

  • Aspartic Acid Endopeptidases
  • Cell Differentiation
  • Heart
  • Purkinje Fibers

Identity

Scopus Document Identifier

  • 10744231575

Digital Object Identifier (DOI)

  • 10.1242/dev.00947

PubMed ID

  • 14711873

Additional Document Info

volume

  • 131

issue

  • 3