Wnt5 signaling in vertebrate pancreas development. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Signaling by the Wnt family of secreted glycoproteins through their receptors, the frizzled (Fz) family of seven-pass transmembrane proteins, is critical for numerous cell fate and tissue polarity decisions during development. RESULTS: We report a novel role of Wnt signaling in organogenesis using the formation of the islet during pancreatic development as a model tissue. We used the advantages of the zebrafish to visualize and document this process in living embryos and demonstrated that insulin-positive cells actively migrate to form an islet. We used morpholinos (MOs), sequence-specific translational inhibitors, and time-lapse imaging analysis to show that the Wnt-5 ligand and the Fz-2 receptor are required for proper insulin-cell migration in zebrafish. Histological analyses of islets in Wnt5a(-/-) mouse embryos showed that Wnt5a signaling is also critical for murine pancreatic insulin-cell migration. CONCLUSION: Our results implicate a conserved role of a Wnt5/Fz2 signaling pathway in islet formation during pancreatic development. This study opens the door for further investigation into a role of Wnt signaling in vertebrate organ development and disease.

publication date

  • October 24, 2005

Research

keywords

  • Pancreas
  • Proto-Oncogene Proteins
  • Receptors, G-Protein-Coupled
  • Vertebrates
  • Wnt Proteins
  • Zebrafish Proteins

Identity

PubMed Central ID

  • PMC1276788

Scopus Document Identifier

  • 27744517439

Digital Object Identifier (DOI)

  • 10.1016/S0960-9822(00)00252-9

PubMed ID

  • 16246260

Additional Document Info

volume

  • 3