Association of glycosphingolipids with intermediate filaments of mesenchymal, epithelial, glial, and muscle cells. Academic Article uri icon

Overview

abstract

  • We reported recently that two glycosphingolipids (GSLs), globoside (Gb4) and ganglioside GM3, colocalized with vimentin intermediate filaments of human umbilical vein endothelial cells. To determine whether this association is unique to endothelial cells or to vimentin, we analyzed a variety of cell types. Double-label immunofluorescent staining of fixed, permeabilized cells, with and without colcemid treatment, was performed with antibodies against glycolipids and intermediate filaments. Globoside colocalized with vimentin in human and mouse fibroblasts, with desmin in smooth muscle cells, with keratin in keratinocytes and hepatoma cells, and with glial fibrillary acidic protein (GFAP) in glial cells. Globoside colocalization was detected only with vimentin in MDCK and HeLa cells, which contain separate vimentin and keratin networks. GM3 ganglioside also colocalized with vimentin in human fibroblasts. Association of other GSLs with intermediate filaments was not detected by immunofluorescence, but all cell GSLs were detected in cytoskeletal fractions of metabolically labelled endothelial cells. These observations indicate that globoside colocalizes with vimentin, desmin, kertain and GFAP, with a preference for vimentin in cells that contain both vimentin and keratin networks. The nature of the association is not yet known. Globoside and GM3 may be present in vesicles associated with intermediate filaments (IF), or bound directly to IF or IF associated proteins. The prevalence of this association suggests that colocalization of globoside with the intermediate filament network has functional significance. We are investigating the possibility that intermediate filaments participate in the intracellular transport and sorting of glycosphingolipids.

publication date

  • January 1, 1992

Research

keywords

  • G(M3) Ganglioside
  • Globosides
  • Glycosphingolipids
  • Intermediate Filaments

Identity

Scopus Document Identifier

  • 0026689736

Digital Object Identifier (DOI)

  • 10.1002/cm.970210402

PubMed ID

  • 1628323

Additional Document Info

volume

  • 21

issue

  • 4