Human biodistribution and radiation dosimetry of the tachykinin NK1 antagonist radioligand [18F]SPA-RQ: comparison of thin-slice, bisected, and 2-dimensional planar image analysis. Academic Article uri icon

Overview

abstract

  • UNLABELLED: (18)F-Labeled substance P antagonist-receptor quantifier ([(18)F]SPA-RQ) [2-fluoromethoxy-5-(5-trifluoromethyl-tetrazol-1-yl)-benzyl]-[(2S,3S)-2-phenyl-piperidin-3-yl)amine] is a selective radioligand for in vivo quantification of tachykinin NK(1) receptors with PET. The aims of this study were to estimate the radiation safety profile and relative risks of [(18)F]SPA-RQ with 3 different methods of image analysis. METHODS: Whole-body PET images were acquired in 7 healthy subjects after injection of 192 +/- 7 MBq (5.2 +/- 0.2 mCi) [(18)F]SPA-RQ. Emission images were serially acquired at multiple time-points from 0 to 120 min and approximately 180-240 min after injection. Urine samples were collected after each imaging session and for 24 h after the last scan to measure excreted radioactivity. Horizontal tomographic images were compressed to varying degrees in the anteroposterior direction to create 3 datasets: thin-slice, bisected, and 2-dimensional (2D) planar images. Regions of interest were drawn around visually identifiable source organs to generate time-activity curves for each dataset. Residence times were determined from these curves, and doses to individual organs and the body as a whole were calculated using OLINDA/EXM 1.0. RESULTS: The lungs, upper large intestine wall, small intestine, urinary bladder wall, kidneys, and thyroid had the highest radiation-absorbed doses. Biexponential fitting of mean bladder and urine activity showed that about 41% of injected activity was excreted via urine. Assuming a 2.4-h urine voiding interval, the calculated effective doses from thin-slice, bisected, and 2D planar images were 29.5, 29.3, and 32.3 microSv/MBq (109, 108, and 120 mrem/mCi), respectively. CONCLUSION: Insofar as effective dose is an accurate measure of radiation risk, all 3 methods of analysis provided quite similar estimates of risk to human subjects. The radiation dose was moderate and would potentially allow subjects to receive multiple PET scans in a single year. Individual organ exposures varied among the 3 methods, especially for structures asymmetrically located in an anterior or posterior position. Bisected and 2D planar images almost always provided higher organ dose estimates than thin-slice images. Thus, either the bisected or 2D planar method of analysis appears acceptable for quantifying human radiation burden, at least for radioligands with a relatively broad distribution in the body and not concentrated in a small number of radiation sensitive organs.

publication date

  • January 1, 2007

Research

keywords

  • Fluorine Radioisotopes
  • Neurokinin-1 Receptor Antagonists
  • Piperidines
  • Positron-Emission Tomography
  • Radiometry
  • Radiopharmaceuticals
  • Tetrazoles

Identity

PubMed Central ID

  • PMC4135382

Scopus Document Identifier

  • 33847271750

PubMed ID

  • 17204705

Additional Document Info

volume

  • 48

issue

  • 1