Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy. Academic Article uri icon

Overview

abstract

  • Tumor hypoxia is commonly observed in primary solid malignancies but the hypoxic status of subclinical micrometastatic disease is largely unknown. The distribution of hypoxia in microscopic tumors was studied in animal models of disseminated peritoneal disease and intradermal (i.d.) growing tumors. Tumors derived from human colorectal adenocarcinoma cell lines HT29 and HCT-8 ranged in size from a few hundred microns to several millimeters in diameter. Hypoxia was detected by immunofluorescent visualization of pimonidazole and the hypoxia-regulated protein carbonic anhydrase 9. Tumor blood perfusion, cellular proliferation, and vascularity were visualized using Hoechst 33342, bromodeoxyuridine, and CD31 staining, respectively. In general, tumors of <1 mm diameter were intensely hypoxic, poorly perfused, and possessed little to no vasculature. Larger tumors (approximately 1-4 mm diameter) were well perfused with widespread vasculature and were not significantly hypoxic. Patterns of hypoxia in disseminated peritoneal tumors and i.d. tumors were similar. Levels of hypoxia in microscopic peritoneal tumors were reduced by carbogen breathing. Peritoneal and i.d. tumor models are suitable for studying hypoxia in microscopic tumors. If the patterns of tumor hypoxia in human patients are similar to those observed in these animal experiments, then the efficacy of systemic treatments of micrometastatic disease may be compromised by hypoxic resistance.

publication date

  • August 15, 2007

Research

keywords

  • Colonic Neoplasms
  • Oxygen
  • Peritoneal Neoplasms

Identity

Scopus Document Identifier

  • 34548018979

Digital Object Identifier (DOI)

  • 10.1158/0008-5472.CAN-06-4353

PubMed ID

  • 17699769

Additional Document Info

volume

  • 67

issue

  • 16