Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts.
Review
Overview
abstract
Interface tissue engineering is a promising new strategy aimed at the regeneration of tissue interfaces and ultimately enabling the biological fixation of soft tissue grafts used in orthopedic repair and sports medicine. Many ligaments and tendons with direct insertions into subchondral bone exhibit a complex enthesis consisting of several distinct yet continuous regions of soft tissue, noncalcified fibrocartilage, calcified fibrocartilage, and bone. Regeneration of this multi-tissue interface will be critical for functional graft integration and improving long-term clinical outcome. This review highlights current knowledge of the structure-function relationship at the interface, the mechanism of interface regeneration, and the strategic biomimicry implemented in stratified scaffold design for interface tissue engineering and multi-tissue regeneration. Potential challenges and future directions in this emerging field are also discussed. It is anticipated that interface tissue engineering will lead to the design of a new generation of integrative fixation devices for soft tissue repair, and it will be instrumental for the development of integrated musculoskeletal tissue systems with biomimetic complexity and functionality.