CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. Academic Article uri icon

Overview

abstract

  • Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity. Co-cultivation of these cells with naïve cells expressing enhanced green fluorescent protein (EGFP) resulted in a small number of cells co-expressing both EGFP and HCV NS5A, showing that the HCVcc mutants are capable of cell-to-cell spread. In contrast, no cell-to-cell transmission from JFH1(DeltaE1E2)-transfected cells occurred, indicating that the HCV glycoproteins are essential for this process. The frequency of cell-to-cell transmission of JFH1(W529A) was unaffected by the presence of neutralizing antibodies that inhibit E2-CD81 interactions. By using cell lines that expressed little or no CD81 and that were refractive to infection with cell-free virus, we showed that the occurrence of viral cell-to-cell transmission is not influenced by the levels of CD81 on either donor or recipient cells. Thus, our results show that CD81 plays no role in the cell-to-cell spread of HCVcc and that this mode of transmission is shielded from neutralizing antibodies. These data suggest that therapeutic interventions targeting the entry of cell-free HCV may not be sufficient in controlling an ongoing chronic infection, but need to be complemented by additional strategies aimed at disrupting direct cell-to-cell viral transmission.

publication date

  • January 1, 2009

Research

keywords

  • Antigens, CD
  • Hepacivirus
  • Hepatocytes
  • Receptors, Virus

Identity

PubMed Central ID

  • PMC2885024

Scopus Document Identifier

  • 59849121683

Digital Object Identifier (DOI)

  • 10.1099/vir.0.006700-0

PubMed ID

  • 19088272

Additional Document Info

volume

  • 90

issue

  • Pt 1