Heat shock protein 90: translation from cancer to Alzheimer's disease treatment?
Review
Overview
abstract
Both malignant transformation and neurodegeneration, as it occurs in Alzheimer's disease, are complex and lengthy multistep processes characterized by abnormal expression, post-translational modification, and processing of certain proteins. To maintain and allow the accumulation of these dysregulated processes, and to facilitate the step-wise evolution of the disease phenotype, cells must co-opt a compensatory regulatory mechanism. In cancer, this role has been attributed to heat shock protein 90 (Hsp90), a molecular chaperone that maintains the functional conformation of multiple proteins involved in cell-specific oncogenic processes. In this sense, at the phenotypic level, Hsp90 appears to serve as a biochemical buffer for the numerous cancer-specific lesions that are characteristic of diverse tumors. The current review proposes a similar role for Hsp90 in neurodegeneration. It will present experimentally demonstrated, but also hypothetical, roles that suggest Hsp90 can act as a regulator of pathogenic changes that lead to the neurodegenerative phenotype in Alzheimer's disease.