Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Academic Article uri icon

Overview

abstract

  • PURPOSE: Vorinostat, a histone deacetylase inhibitor, enhances cell death by the proteasome inhibitor bortezomib in vitro. We sought to test the combination clinically. EXPERIMENTAL DESIGN: A phase I trial evaluated sequential dose escalation of bortezomib at 1 to 1.3 mg/m2 i.v. on days 1, 4, 8, and 11 and vorinostat at 100 to 500 mg orally daily for 8 days of each 21-day cycle in relapsed/refractory multiple myeloma patients. Vorinostat pharmacokinetics and dynamics were assessed. RESULTS: Twenty-three patients were treated. Patients had received a median of 7 prior regimens (range, 3-13), including autologous transplantation in 20, thalidomide in all 23, lenalidomide in 17, and bortezomib in 19, 9 of whom were bortezomib-refractory. Two patients receiving 500 mg vorinostat had prolonged QT interval and fatigue as dose-limiting toxicities. The most common grade >3 toxicities were myelo-suppression (n = 13), fatigue (n = 11), and diarrhea (n = 5). There were no drug-related deaths. Overall response rate was 42%, including three partial responses among nine bortezomib refractory patients. Vorinostat pharmacokinetics were nonlinear. Serum Cmax reached a plateau above 400 mg. Pharmacodynamic changes in CD-138+ bone marrow cells before and on day 11 showed no correlation between protein levels of NF-kappaB, IkappaB, acetylated tubulin, and p21CIP1 and clinical response. CONCLUSIONS: The maximum tolerated dose of vorinostat in our study was 400 mg daily for 8 days every 21 days, with bortezomib administered at a dose of 1.3 mg/m2 on days 1, 4, 8, and 11. The promising antimyeloma activity of the regimen in refractory patients merits further evaluation.

publication date

  • August 11, 2009

Research

keywords

  • Antineoplastic Combined Chemotherapy Protocols
  • Boronic Acids
  • Hydroxamic Acids
  • Multiple Myeloma
  • Pyrazines

Identity

PubMed Central ID

  • PMC2758911

Scopus Document Identifier

  • 69349097803

Digital Object Identifier (DOI)

  • 10.1158/1078-0432.CCR-08-2850

PubMed ID

  • 19671864

Additional Document Info

volume

  • 15

issue

  • 16