Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Review uri icon

Overview

abstract

  • Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that affects the aging population. A progressive loss of motor neurons in the spinal cord and brain leads to muscle paralysis and death. As in other common neurodegenerative diseases, aging-related mitochondrial dysfunction is increasingly being considered among the pathogenic factors. Mitochondria are critical for cell survival: they provide energy to the cell, buffer intracellular calcium, and regulate apoptotic cell death. Whether mitochondrial abnormalities are a trigger or a consequence of the neurodegenerative process and the mechanisms whereby mitochondrial dysfunction contributes to disease are not clear yet. Calcium homeostasis is a major function of mitochondria in neurons, and there is ample evidence that intracellular calcium is dysregulated in ALS. The impact of mitochondrial dysfunction on intracellular calcium homeostasis and its role in motor neuron demise are intriguing issues that warrants in depth discussion. Clearly, unraveling the causal relationship between mitochondrial dysfunction, calcium dysregulation, and neuronal death is critical for the understanding of ALS pathogenesis. In this review, we will outline the current knowledge of various aspects of mitochondrial dysfunction in ALS, with a special emphasis on the role of these abnormalities on intracellular calcium handling.

publication date

  • May 20, 2010

Research

keywords

  • Aging
  • Amyotrophic Lateral Sclerosis
  • Calcium
  • Mitochondria
  • Motor Neurons

Identity

PubMed Central ID

  • PMC2933290

Scopus Document Identifier

  • 77956183828

Digital Object Identifier (DOI)

  • 10.1016/j.mad.2010.05.003

PubMed ID

  • 20493207

Additional Document Info

volume

  • 131

issue

  • 7-8