Carpal and forearm kinematics during a simulated hammering task. Academic Article uri icon

Overview

abstract

  • PURPOSE: Hammering is a functional task in which the wrist generally follows a path of motion from a position of combined radial deviation and extension to combined ulnar deviation and flexion, colloquially referred to as a dart thrower's motion. The purpose of this study was to measure wrist and forearm motion and scaphoid and lunate kinematics during a simulated hammering task. We hypothesized that the wrist follows an oblique path from radial extension to ulnar flexion and that there would be minimal radiocarpal motion during the hammering task. METHODS: Thirteen healthy volunteers consented to have their wrist and distal forearm imaged with computed tomography at 5 positions while performing a simulated hammering task. The kinematics of the carpus and distal radioulnar joint were calculated using established markerless bone registration methods. The path of wrist motion was described relative to the sagittal plane. Forearm rotation and radioscaphoid and radiolunate motion were computed as a function of wrist position. RESULTS: All volunteers performed the simulated hammering task using a path of wrist motion from radial extension to ulnar flexion that was oriented an average of 41 degrees +/- 3 degrees from the sagittal plane. These paths did not pass through the anatomic neutral wrist position; rather, they passed through a neutral hammering position, which was offset by 36 degrees +/- 8 degrees in extension. Rotations of the scaphoid and lunate were not minimal but averaged 40% and 41%, respectively, of total wrist motion. The range of forearm pronation-supination during the task averaged 12 degrees +/- 8 degrees . CONCLUSIONS: The simulated hammering task was performed using a wrist motion that followed a coupled path of motion, from extension and radial deviation to flexion and ulnar deviation. Scaphoid and lunate rotations were greatly reduced, but not minimized, compared with rotations during pure wrist flexion/extension. This is likely because an extended wrist position was maintained throughout the entire task studied.

publication date

  • July 1, 2010

Research

keywords

  • Carpal Joints
  • Range of Motion, Articular
  • Task Performance and Analysis
  • Wrist Joint

Identity

PubMed Central ID

  • PMC2901240

Scopus Document Identifier

  • 77954040369

Digital Object Identifier (DOI)

  • 10.1016/j.jhsa.2010.04.021

PubMed ID

  • 20610055

Additional Document Info

volume

  • 35

issue

  • 7