A novel method for the reproducible production of thoracolumbar burst fractures in human cadaveric specimens. Academic Article uri icon

Overview

abstract

  • BACKGROUND CONTEXT: Currently, there is no reproducible method that produces thoracolumbar burst fractures in human cadavers wherein the fracture configuration mirrors that seen naturally, and soft tissues are maintained. PURPOSE: To describe a novel method of burst fracture production. STUDY DESIGN: Biomechanical. METHODS: Five cadaveric specimens were potted in polymethymethacrylate at T10 and L4; T10 to T12 and L2 to L4 were encased in a pourable rigid foam; flexion of 15° was created focused at L1; and a drop tower weight of 25 kg via "free fall" was used. On load delivery, the spine was allowed to flex without restriction (native bony and soft-tissue constraints). X-ray, computed tomography scan, and open dissection were used to confirm burst configuration. RESULTS: All five specimens were found to have the "classic" burst configuration characterized by superior end plate comminution, depression of the anterior column, middle column burst with three to five fragments; the classic central fragment retropulsed into the canal, and the pedicular spread via basilar fracture. CONCLUSION: This novel method affords true burst fracture reproduction without "prestressing" (notching, osteotomies, laminectomy, stripping) used in previous methods. This should allow greater accuracy for the translation of biomechanical testing to clinical applications.

publication date

  • April 16, 2011

Research

keywords

  • Lumbar Vertebrae
  • Spinal Fractures
  • Thoracic Vertebrae

Identity

Scopus Document Identifier

  • 79955876072

Digital Object Identifier (DOI)

  • 10.1016/j.spinee.2011.03.021

PubMed ID

  • 21497560

Additional Document Info

volume

  • 11

issue

  • 5