Discrimination of benign and malignant breast lesions by using shutter-speed dynamic contrast-enhanced MR imaging.
Academic Article
Overview
abstract
PURPOSE: To assess the accuracy of the shutter-speed approach compared with standard approach dynamic contrast material-enhanced magnetic resonance (MR) imaging pharmacokinetic analysis for breast cancer diagnosis. MATERIALS AND METHODS: This study was approved by the institutional review board and was HIPAA compliant. Informed consent was obtained from 89 high-risk women (age range, 28-83 years) who had 92 suspicious lesions with negative findings at mammography (but visible at MR imaging). Each underwent a research dynamic contrast-enhanced MR imaging examination just prior to a clinical MR imaging-guided interventional procedure. Tumor region of interest (ROI) averaged and (for some) pixel-by-pixel dynamic contrast-enhanced time-course data, together with mean arterial input function, were subjected to serial standard and shutter-speed approach analyses to extract pharmacokinetic parameters, including rate constant for passive contrast reagent transfer between plasma and interstitium (K(trans)) and interstitial space volume fraction, or v(e). Pathologic findings were used as reference standards. Diagnostic accuracy was assessed with receiver operating characteristic analyses. RESULTS: The pathologic analyses revealed 20 malignant and 72 benign lesions. Positive predictive value of the institutional clinical breast MR imaging protocol was 22%. At 100% sensitivity, ROI-averaged shutter-speed approach K(trans) had significantly (P = .008) higher diagnostic specificity than standard approach K(trans): 86.1% versus 77.8%. The difference in the ROI-averaged K(trans) parameter value, or ΔK(trans) (≡ K(trans) [shutter-speed approach] - K(trans) [standard approach]), had even higher specificity (88.9%). Combined use of ROI analysis and pixel-by-pixel mapping of ΔK(trans) achieved 98.6% specificity at 100% sensitivity. CONCLUSION: The use of the shutter-speed dynamic contrast-enhanced MR imaging method has the potential to improve breast cancer diagnostic accuracy and reduce putatively unnecessary biopsy procedures that yield benign pathologic findings. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11102413/-/DC1.