Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity.
Academic Article
Overview
abstract
OBJECTIVE: The gut microbiota is an environmental regulator of fat storage and adiposity. Whether the microbiota represents a realistic therapeutic target for improving metabolic health is unclear. This study explored two antimicrobial strategies for their impact on metabolic abnormalities in murine diet-induced obesity: oral vancomycin and a bacteriocin-producing probiotic (Lactobacillus salivarius UCC118 Bac(+)). DESIGN: Male (7-week-old) C57BL/J6 mice (9-10/group) were fed a low-fat (lean) or a high-fat diet for 20 weeks with/without vancomycin by gavage at 2 mg/day, or with L. salivarius UCC118Bac(+) or the bacteriocin-negative derivative L. salivarius UCC118Bac(-) (each at a dose of 1×10(9) cfu/day by gavage). Compositional analysis of the microbiota was by 16S rDNA amplicon pyrosequencing. RESULTS: Analysis of the gut microbiota showed that vancomycin treatment led to significant reductions in the proportions of Firmicutes and Bacteroidetes and a dramatic increase in Proteobacteria, with no change in Actinobacteria. Vancomycin-treated high-fat-fed mice gained less weight over the intervention period despite similar caloric intake, and had lower fasting blood glucose, plasma TNFα and triglyceride levels compared with diet-induced obese controls. The bacteriocin-producing probiotic had no significant impact on the proportions of Firmicutes but resulted in a relative increase in Bacteroidetes and Proteobacteria and a decrease in Actinobacteria compared with the non-bacteriocin-producing control. No improvement in metabolic profiles was observed in probiotic-fed diet-induced obese mice. CONCLUSION: Both vancomycin and the bacteriocin-producing probiotic altered the gut microbiota in diet-induced obese mice, but in distinct ways. Only vancomycin treatment resulted in an improvement in the metabolic abnormalities associated with obesity thereby establishing that while the gut microbiota is a realistic therapeutic target, the specificity of the antimicrobial agent employed is critical.