Differentiation of malignant and benign breast lesions using magnetization transfer imaging and dynamic contrast-enhanced MRI.
Academic Article
Overview
abstract
PURPOSE: To evaluate feasibility of using magnetization transfer ratio (MTR) in conjunction with dynamic contrast-enhanced MRI (DCE-MRI) for differentiation of benign and malignant breast lesions at 3 Tesla. MATERIALS AND METHODS: This prospective study was IRB and HIPAA compliant. DCE-MRI scans followed by MT imaging were performed on 41 patients. Regions of interest (ROIs) were drawn on co-registered MTR and DCE postcontrast images for breast structures, including benign lesions (BL) and malignant lesions (ML). Initial enhancement ratio (IER) and delayed enhancement ratio (DER) were calculated, as were normalized MTR, DER, and IER (NMTR, NDER, NIER) values. Diagnostic accuracy analysis was performed. RESULTS: Mean MTR in ML was lower than in BL (P < 0.05); mean DER and mean IER in ML were significantly higher than in BL (P < 0.01, P < 0.001). NMTR, NDER, and NIER were significantly lower in ML versus BL (P < 0.007, P < 0.001, P < 0.001). IER had highest diagnostic accuracy (77.6%), sensitivity (86.2%), and area under the ROC curve (.879). MTR specificity was 100%. Logistic regression modeling with NMTR and NIER yielded best results for BL versus ML (sensitivity 93.1%, specificity 80%, AUC 0.884, accuracy 83.7%). CONCLUSION: Isolated quantitative DCE analysis may increase specificity of breast MR for differentiating BL and ML. DCE-MRI with NMTR may produce a robust means of evaluating breast lesions.