Changes in axonal transport of phospholipids in the regenerating goldfish optic system.
Academic Article
Overview
abstract
Changes in axonally transported phospholipids of regenerating goldfish optic nerve were studied by intraocular injection of [2-3H]glycerol 9 days and 16 days after nerve crush at 30 degrees C. The four major glycerophospholipids all showed substantial increases in transported radioactivity above non-regenerating controls at both time points, these being maximal (15- to 35-fold) in the optic nerve-tract at 9 days and about half as great at 16 days. In the contralateral optic tectum transported label increased 6- to 13-fold at 9 days and 10- to 25-fold at 16 days in the various glycerophospholipids. While all glycerophospholipids showed absolute increases in both tissues, PS and PI increased relatively more, especially in the tectum. The regeneration-associated increases in transported label of all glycerophospholipids were larger than those previously demonstrated for gangliosides and glycoproteins in the same system.