Kinetics of alpha 2-macroglobulin endocytosis and degradation in mutant and wild-type Chinese hamster ovary cells. Academic Article uri icon

Overview

abstract

  • The production of Chinese hamster ovary (CHO) cell mutants which are defective in endocytosis has led to a greater understanding of the process by which cells sort ligands and their receptors. Robbins and coworkers have obtained CHO mutants which are resistant to diphtheria toxin, defective in the delivery of endocytosed lysosomal enzymes to lysosomes, and have a decreased uptake of iron from transferrin (Robbins et al.: J. Cell Biol. 96:1064-1071, 1983). We have previously shown that these CHO mutants are markedly deficient in the acidification of early endocytic compartments (Yamashiro and Maxfield: J. Cell Biol. 105:2713-2721, 1987). In this study we examined the endocytosis of alpha 2-macroglobulin (alpha 2M) to determine whether the defects in early endosome acidification would alter the processing of this ligand. We found that the CHO mutants DTG 1-5-4 and DTF 1-5-1 bind, internalize, and degrade 125I-alpha 2M in a manner similar to the wild-type cells. We also found that the CHO mutants retain the ability to recycle the receptors for alpha 2M. Since the binding of alpha 2M is greatly reduced at mildly acidic pH (approximately 6.8), only slight acidification of the endosomal compartment should be sufficient to achieve sorting of alpha 2M from its receptor. In contrast, lysosomal enzymes require more acidic conditions (pH less than 6.0) for dissociation. The different behavior of the two ligands provides biochemical evidence for a partial (but not complete) defect in early endosome acidification in the mutants. The data also indicate that pH regulation in a relatively narrow range can achieve differential sorting of various ligands.

publication date

  • May 1, 1989

Research

keywords

  • Endocytosis
  • alpha-Macroglobulins

Identity

Scopus Document Identifier

  • 0024594368

Digital Object Identifier (DOI)

  • 10.1002/jcp.1041390221

PubMed ID

  • 2469687

Additional Document Info

volume

  • 139

issue

  • 2