Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Academic Article uri icon

Overview

abstract

  • Metastasis remains the most common cause of death in most cancers, with limited therapies for combating disseminated disease. While the primary tumour microenvironment is an important regulator of cancer progression, it is less well understood how different tissue environments influence metastasis. We analysed tumour-stroma interactions that modulate organ tropism of brain, bone and lung metastasis in xenograft models. We identified a number of potential modulators of site-specific metastasis, including cathepsin S as a regulator of breast-to-brain metastasis. High cathepsin S expression at the primary site correlated with decreased brain metastasis-free survival in breast cancer patients. Both macrophages and tumour cells produce cathepsin S, and only the combined depletion significantly reduced brain metastasis in vivo. Cathepsin S specifically mediates blood-brain barrier transmigration through proteolytic processing of the junctional adhesion molecule, JAM-B. Pharmacological inhibition of cathepsin S significantly reduced experimental brain metastasis, supporting its consideration as a therapeutic target for this disease.

publication date

  • August 3, 2014

Research

keywords

  • Brain Neoplasms
  • Breast Neoplasms
  • Cathepsins

Identity

PubMed Central ID

  • PMC4249762

Scopus Document Identifier

  • 84908118492

Digital Object Identifier (DOI)

  • 10.1038/ncb3011

PubMed ID

  • 25086747

Additional Document Info

volume

  • 16

issue

  • 9