Evaluation in monkey of two candidate PET radioligands, [11 C]RX-1 and [18 F]RX-2, for imaging brain 5-HT4 receptors.
Academic Article
Overview
abstract
-
The serotonin subtype-4 (5-HT4 ) receptor, which is known to be involved physiologically in learning and memory, and pathologically in Alzheimer's disease, anxiety, and other neuropsychiatric disorders-has few radioligands readily available for imaging in vivo. We have previously reported two novel 5-HT4 receptor radioligands, namely [methoxy-11 C](1-butylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate; [11 C]RX-1), and the [18 F]3-fluoromethoxy analog ([18 F]RX-2), and in this study we evaluated them by PET in rhesus monkey. Brain scans were performed at baseline, receptor preblock or displacement conditions using SB 207710, a 5-HT4 receptor antagonist, on the same day for [11 C]RX-1 and on different days for [18 F]RX-2. Specific-to-nondisplaceable ratio (BPND ) was measured with the simplified reference tissue model from all baseline scans. To determine specific binding, total distribution volume (VT ) was also measured in some monkeys by radiometabolite-corrected arterial input function after ex vivo inhibition of esterases from baseline and blocked scans. Both radioligands showed moderate to high peak brain uptake of radioactivity (2-6 SUV). Regional BPND values were in the rank order of known 5-HT4 receptor distribution with a trend for higher BPND values from [18 F]RX-2. One-tissue compartmental model provided good fits with well identified VT values for both radioligands. In the highest 5-HT4 receptor density region, striatum, 50-60% of total binding was specific. The VT in receptor-poor cerebellum reached stable values by about 60 min for both radioligands indicating little influence of radiometabolites on brain signal. In conclusion, both [11 C]RX-1 and [18 F]RX-2 showed positive attributes for PET imaging of brain 5-HT4 receptors, validating the radioligand design strategy. Synapse 68:613-623, 2014. © 2014 Wiley Periodicals, Inc.
publication date
published in
Identity
PubMed Central ID
Scopus Document Identifier
Digital Object Identifier (DOI)
PubMed ID
Additional Document Info
has global citation frequency
volume
issue