Pathologic study of a disease provides insights into the precise mechanisms and targets of damage and may provide insights into new therapies. The main targets in diabetic neuropathy are myelinated and unmyelinated fibers as dysfunction and damage to them explains the symptoms of painful neuropathy and the major end points of foot ulceration and amputation as well as mortality. Demyelination and axonal degeneration are established hallmarks of the pathology of human diabetic neuropathy and were derived from pioneering light and electronmicroscopic studies of sural nerve biopsies in the late 1960s and early 1970s. Additional abnormalities, which are relevant to the pathogenesis of human diabetic neuropathy, include pathology of the microvessels and extracellular space. Intraepidermal and sudomotor nerve quantification in skin biopsies provides a minimally invasive means for the detection of early nerve damage. Studies of muscle biopsies are limited and show significant alterations in the expression of neurotrophins, but limited changes in muscle fiber size and capillary density.