Effect of Mild Cold Exposure on Cognition in Persons with Tetraplegia. Academic Article uri icon

Overview

abstract

  • UNLABELLED: Persons with a cervical spinal cord injury (SCI) have impaired thermoregulatory mechanisms secondary to interrupted of motor, sensory, and sympathetic pathways. In this study, our primary aim was to determine the effect of cool temperature exposure on core body temperature (Tcore) and cognitive performance in persons with tetraplegia. Seven men with chronic tetraplegia (C3-C7, American Spinal Injury Association Impairment Scale [AIS] A-C) and seven able-bodied controls were exposed to 27°C temperature at baseline (BL) before being exposed to 18°C for ≤120 min (Cool Challenge). Rectal temperature (Tcore), distal skin temperatures (Tskavg), microvascular skin perfusion (LDFavg), and systolic blood pressure (SBP) were measured. Cognitive performance was assessed using Delayed Recall, Stroop Interference tests at the end of BL and Cool Challenge. After Cool Challenge, Tcore decreased -1.2±0.12°C (p<0.0001) in tetraplegics after an average of 109±15.9 min with no change in controls after 120 min. Tskavg declined in both groups, but decline was less in tetraplegics than in controls (-8.6±5.8% vs. -31.6±7.9%, respectively; p<0.0001). LDFavg declined only in controls (-72±17.9%; p<0.001). Plasma norepinephrine levels differed after Cool Challenge (tetraplegics vs. CONTROLS: 86±62 pg/mL vs. 832±431 pg/mL, respectively; p<0.01). SBP increased from BL to Cool Challenge only in controls (123±16 mm Hg to 149±17 mm Hg, respectively; p<0.01). Delayed Recall and Stroop Interference scores both declined in tetraplegics (-55±47.4%; p<0.05 and -3.9±3.8%; p<0.05, respectively), but not in controls. We conclude that persons with tetraplegia lack adequate thermoregulatory mechanisms to prevent downward drift in Tcore on exposure to cool temperatures. This decline in Tcore was associated with deterioration of working memory and executive function.

publication date

  • March 31, 2015

Research

keywords

  • Cognition
  • Cold Temperature
  • Quadriplegia
  • Thermosensing

Identity

Scopus Document Identifier

  • 84937010950

Digital Object Identifier (DOI)

  • 10.1089/neu.2014.3719

PubMed ID

  • 25531297

Additional Document Info

volume

  • 32

issue

  • 15