Using light to shape chemical gradients for parallel and automated analysis of chemotaxis. Academic Article uri icon

Overview

abstract

  • Numerous molecular components have been identified that regulate the directed migration of eukaryotic cells toward sources of chemoattractant. However, how the components of this system are wired together to coordinate multiple aspects of the response, such as directionality, speed, and sensitivity to stimulus, remains poorly understood. Here we developed a method to shape chemoattractant gradients optically and analyze cellular chemotaxis responses of hundreds of living cells per well in 96-well format by measuring speed changes and directional accuracy. We then systematically characterized migration and chemotaxis phenotypes for 285 siRNA perturbations. A key finding was that the G-protein Giα subunit selectively controls the direction of migration while the receptor and Gβ subunit proportionally control both speed and direction. Furthermore, we demonstrate that neutrophils chemotax persistently in response to gradients of fMLF but only transiently in response to gradients of ATP. The method we introduce is applicable for diverse chemical cues and systematic perturbations, can be used to measure multiple cell migration and signaling parameters, and is compatible with low- and high-resolution fluorescence microscopy.

publication date

  • April 23, 2015

Research

keywords

  • Chemotaxis
  • Ultraviolet Rays

Identity

PubMed Central ID

  • PMC4422560

Scopus Document Identifier

  • 84928788720

Digital Object Identifier (DOI)

  • 10.15252/msb.20156027

PubMed ID

  • 25908733

Additional Document Info

volume

  • 11

issue

  • 4