Hypoxia Induces Production of L-2-Hydroxyglutarate. Academic Article uri icon

Overview

abstract

  • Somatic mutations in isocitrate dehydrogenase 1 or 2 (IDH1/2) contribute to the pathogenesis of cancer via production of the "oncometabolite" D-2-hydroxyglutarate (D-2HG). Elevated D-2HG can block differentiation of malignant cells by functioning as a competitive inhibitor of α-ketoglutarate (α-KG)-dependent enzymes, including Jumonji family histone lysine demethylases. 2HG is a chiral molecule that can exist in either the D-enantiomer or the L-enantiomer. Although cancer-associated IDH1/2 mutants produce D-2HG, biochemical studies have demonstrated that L-2HG also functions as a potent inhibitor of α-KG-dependent enzymes. Here we report that under conditions of oxygen limitation, mammalian cells selectively produce L-2HG via enzymatic reduction of α-KG. Hypoxia-induced L-2HG is not mediated by IDH1 or IDH2, but instead results from promiscuous substrate usage primarily by lactate dehydrogenase A (LDHA). During hypoxia, the resulting increase in L-2HG is necessary and sufficient for the induction of increased methylation of histone repressive marks, including histone 3 lysine 9 (H3K9me3).

authors

  • Intlekofer, Andrew Michael
  • Dematteo, Raymond G
  • Venneti, Sriram
  • Finley, Lydia W S
  • Lu, Chao
  • Judkins, Alexander R
  • Rustenburg, Ariën S
  • Grinaway, Patrick B
  • Chodera, John D
  • Cross, Justin R
  • Thompson, Craig B

publication date

  • July 23, 2015

Research

keywords

  • Glutarates

Identity

PubMed Central ID

  • PMC4527873

Scopus Document Identifier

  • 84938568011

Digital Object Identifier (DOI)

  • 10.1016/j.cmet.2015.06.023

PubMed ID

  • 26212717

Additional Document Info

volume

  • 22

issue

  • 2