Forkhead box O transcription factors in chondrocytes regulate endochondral bone formation. Academic Article uri icon

Overview

abstract

  • The differentiation of embryonic mesenchymal cells into chondrocytes and the subsequent formation of a cartilaginous scaffold that enables the formation of long bones are hallmarks of endochondral ossification. During this process, chondrocytes undergo a remarkable sequence of events involving proliferation, differentiation, hypertrophy and eventually apoptosis. Forkhead Box O (FoxO) transcription factors (TFs) are well-known regulators of such cellular processes. Although FoxO3a was previously shown to be regulated by 1,25-dihydroxyvitamin D3 in osteoblasts, a possible role for this family of TFs in chondrocytes during endochondral ossification remains largely unstudied. By crossing Collagen2-Cre mice with FoxO1lox/lox;FoxO3alox/lox;FoxO4lox/lox mice, we generated mice in which the three main FoxO isoforms were deleted in growth plate chondrocytes (chondrocyte triple knock-out; CTKO). Intriguingly, CTKO neonates showed a distinct elongation of the hypertrophic zone of the growth plate. CTKO mice had increased overall body and tail length at eight weeks of age and suffered from severe skeletal deformities at older ages. CTKO chondrocytes displayed decreased expression of genes involved in redox homeostasis. These observations illustrate the importance of FoxO signaling in chondrocytes during endochondral ossification.

publication date

  • July 29, 2015

Research

keywords

  • Bone and Bones
  • Chondrocytes
  • Forkhead Box Protein O1
  • Forkhead Box Protein O3
  • Forkhead Transcription Factors
  • Osteogenesis

Identity

Scopus Document Identifier

  • 84939504773

Digital Object Identifier (DOI)

  • 10.1016/j.jsbmb.2015.07.015

PubMed ID

  • 26232637

Additional Document Info

volume

  • 164