Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. Academic Article uri icon

Overview

abstract

  • UNLABELLED: Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM). Reprogramming efficiencies were comparable to viral methodologies (up to ~9-12%) without the constraints of capsid size and with the ability to control plasmid dosage, in addition to showing superior performance relative to existing non-viral methods. Furthermore, increased neuronal complexity could be tailored by varying BAM ratio and by including additional proneural genes to the BAM cocktail. Furthermore, high-throughput NEP allowed easy interrogation of the reprogramming process. We discovered that BAM-mediated reprogramming is regulated by AsclI dosage, the S-phase cyclin CCNA2, and that some induced neurons passed through a nestin-positive cell stage. FROM THE CLINICAL EDITOR: In the field of regenerative medicine, the ability to direct cell fate by nuclear reprogramming is an important facet in terms of clinical application. In this article, the authors described their novel technique of cell reprogramming through overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM) by in situ electroporation through nanochannels. This new technique could provide a platform for further future designs.

publication date

  • December 19, 2015

Research

keywords

  • Basic Helix-Loop-Helix Transcription Factors
  • Cellular Reprogramming
  • DNA
  • DNA-Binding Proteins
  • Nerve Tissue Proteins
  • Neurons
  • POU Domain Factors
  • Transcription Factors
  • Transfection

Identity

PubMed Central ID

  • PMC5161095

Scopus Document Identifier

  • 84961285614

Digital Object Identifier (DOI)

  • 10.1016/j.nano.2015.11.015

PubMed ID

  • 26711960

Additional Document Info

volume

  • 12

issue

  • 2