Glioblastoma Presenting with Pure Alexia and Palinopsia Involving the Left Inferior Occipital Gyrus and Visual Word Form Area Evaluated with Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography. uri icon

Overview

abstract

  • BACKGROUND: Rapid word recognition and reading fluency is a specialized cortical process governed by the visual word form area (VWFA), which is localized to the dominant posterior lateral occipitotemporal sulcus/fusiform gyrus. A lesion of the VWFA results in pure alexia without agraphia characterized by letter-by-letter reading. Palinopsia is a visual processing distortion characterized by persistent afterimages and has been reported in lesions involving the nondominant occipitotemporal cortex. CASE DESCRIPTION: A 67-year-old right-handed woman with no neurologic history presented to our emergency department with acute cortical ischemic symptoms that began with a transient episode of receptive aphasia. She also reported inability to read, albeit with retained writing ability. She also saw afterimages of objects. During her stroke workup, an intra-axial circumscribed enhancing mass lesion was discovered involving her dominant posterolateral occipitotemporal lobe. Given the eloquent brain involvement, she underwent preoperative functional magnetic resonance imaging with diffusion tensor imaging tractography and awake craniotomy to maximize resection and preserve function. CONCLUSIONS: Many organic lesions involving these regions have been reported in the literature, but to the best of our knowledge, glioblastoma involving the VWFA resulting in both clinical syndromes of pure alexia and palinopsia with superimposed functional magnetic resonance imaging and fiber tract mapping has never been reported before.

publication date

  • December 31, 2015

Research

keywords

  • Brain Neoplasms
  • Cerebral Cortex
  • Dyslexia
  • Glioblastoma
  • Vision Disorders

Identity

Scopus Document Identifier

  • 84961192933

Digital Object Identifier (DOI)

  • 10.1016/j.wneu.2015.12.071

PubMed ID

  • 26748167

Additional Document Info

volume

  • 89