Multiparameter Predictor of Fluid Responsiveness in Cardiac Surgical Patients Receiving Tidal Volumes Less Than 10 mL/kg. Academic Article uri icon

Overview

abstract

  • Introduction We hypothesize that respiratory variation in the pulmonary artery tracing predicts fluid responsiveness (primary hypothesis) and that inclusion of multiple physiologic waveforms as well as ventilator settings in a predictive model of fluid responsiveness would lead to improvements in the clinical utility of this class of metrics (secondary hypothesis). Methods Blood pressure tracings were prospectively recorded in 35 patients immediately following cardiac surgery. Fluid bolus administration data, ventilator settings, and cardiac output were recorded prospectively before and after fluid boluses given at the discretion of the treating physician. Results We observed statistically significant but limited relationships between pulmonic (r(2) = .26, P = .0052) and systemic (r(2) = .13, P = .011) pulse pressure variation and changes in cardiac index. A multiparameter estimate of fluid responsiveness, which included respiratory variation in central venous pressure and pulmonary artery pressure, indexed tidal volumes, positive end-expiratory pressure, and mean airway pressure, was also correlated with change in cardiac index (r(2) = .42, P = .0056). Using the area under the curve (AUC) technique to compare specificity and sensitivity, dynamic indicators (AUC = 0.74, 0.67, and 0.81 for systemic arterial respiratory [pulse pressure] variation, pulmonic arterial respiratory [pulse pressure] variation, and the multiparameter estimate, respectively) outperformed static estimates (0.49 and 0.48 for central venous pressure and pulmonary artery diastolic pressure, respectively). Conclusion While integration of multiple physiologic waveforms as well as ventilator parameters improves the predictability of fluid responsive metrics in the setting of lung-protective ventilation, the composite index may still be of limited predictive value.

publication date

  • June 16, 2016

Research

keywords

  • Cardiac Surgical Procedures
  • Fluid Therapy
  • Tidal Volume

Identity

Scopus Document Identifier

  • 84979005115

Digital Object Identifier (DOI)

  • 10.1177/1089253216654765

PubMed ID

  • 27317553

Additional Document Info

volume

  • 20

issue

  • 3