Gastrin-releasing Peptide Receptor Imaging in Breast Cancer Using the Receptor Antagonist (68)Ga-RM2 And PET. Academic Article uri icon

Overview

abstract

  • INTRODUCTION: The gastrin-releasing peptide receptor (GRPR) is overexpressed in breast cancer. The present study evaluates GRPR imaging as a novel imaging modality in breast cancer by employing positron emission tomography (PET) and the GRPR antagonist (68)Ga-RM2. METHODS: Fifteen female patients with biopsy confirmed primary breast carcinoma (3 bilateral tumors; median clinical stage IIB) underwent (68)Ga-RM2-PET/CT for pretreatment staging. In vivo tumor uptake of (68)Ga-RM2 was correlated with estrogen (ER) and progesterone (PR) receptor expression, HER2/neu status and MIB-1 proliferation index in breast core biopsy specimens. RESULTS: 13/18 tumors demonstrated strongly increased (68)Ga-RM2 uptake compared to normal breast tissue (defined as PET-positive). All PET-positive primary tumors were ER- and PR-positive (13/13) in contrast to only 1/5 PET-negative tumors. Mean SUVMAX of ER-positive tumors was 10.6±6.0 compared to 2.3±1.0 in ER-negative tumors (p=0.016). In a multivariate analysis including ER, PR, HER2/neu and MIB-1, only ER expression predicted (68)Ga-RM2 uptake (model: r(2) =0.55, p=0.025). Normal breast tissue showed inter- and intraindividually variable, moderate GRPR binding (SUVMAX 2.3±1.0), while physiological uptake of other organs was considerably less except pancreas. Of note, (68)Ga-RM2-PET/CT detected internal mammary lymph nodes with high (68)Ga-RM2 uptake (n=8), a contralateral axillary lymph node metastasis (verified by biopsy) and bone metastases (n=1; not detected by bone scan and CT). CONCLUSION: Our study demonstrates that (68)Ga-RM2-PET/CT is a promising imaging method in ER-positive breast cancer. In vivo GRPR binding assessed by (68)Ga-RM2-PET/CT correlated with ER expression in primary tumors of untreated patients.

publication date

  • June 19, 2016

Research

keywords

  • Breast Neoplasms
  • Oligopeptides
  • Positron-Emission Tomography
  • Receptors, Bombesin

Identity

PubMed Central ID

  • PMC4955063

Scopus Document Identifier

  • 84994429461

Digital Object Identifier (DOI)

  • 10.7150/thno.14958

PubMed ID

  • 27446498

Additional Document Info

volume

  • 6

issue

  • 10