Technical Failure of MR Elastography Examinations of the Liver: Experience from a Large Single-Center Study. Academic Article uri icon

Overview

abstract

  • Purpose To assess the determinants of technical failure of magnetic resonance (MR) elastography of the liver in a large single-center study. Materials and Methods This retrospective study was approved by the institutional review board. Seven hundred eighty-one MR elastography examinations performed in 691 consecutive patients (mean age, 58 years; male patients, 434 [62.8%]) in a single center between June 2013 and August 2014 were retrospectively evaluated. MR elastography was performed at 3.0 T (n = 443) or 1.5 T (n = 338) by using a gradient-recalled-echo pulse sequence. MR elastography and anatomic image analysis were performed by two observers. Additional observers measured liver T2* and fat fraction. Technical failure was defined as no pixel value with a confidence index higher than 95% and/or no apparent shear waves imaged. Logistic regression analysis was performed to assess potential predictive factors of technical failure of MR elastography. Results The technical failure rate of MR elastography at 1.5 T was 3.5% (12 of 338), while it was higher, 15.3% (68 of 443), at 3.0 T. On the basis of univariate analysis, body mass index, liver iron deposition, massive ascites, use of 3.0 T, presence of cirrhosis, and alcoholic liver disease were all significantly associated with failure of MR elastography (P < .004); but on the basis of multivariable analysis, only body mass index, liver iron deposition, massive ascites, and use of 3.0 T were significantly associated with failure of MR elastography (P < .004). Conclusion The technical failure rate of MR elastography with a gradient-recalled-echo pulse sequence was low at 1.5 T but substantially higher at 3.0 T. Massive ascites, iron deposition, and high body mass index were additional independent factors associated with failure of MR elastography of the liver with a two-dimensional gradient-recalled-echo pulse sequence. © RSNA, 2017.

publication date

  • January 3, 2017

Research

keywords

  • Elasticity Imaging Techniques
  • Liver Diseases
  • Magnetic Resonance Imaging

Identity

PubMed Central ID

  • PMC5548447

Scopus Document Identifier

  • 85020577119

Digital Object Identifier (DOI)

  • 10.1148/radiol.2016160863

PubMed ID

  • 28045604

Additional Document Info

volume

  • 284

issue

  • 2