Type 1 diabetic patients with peripheral neuropathy have pan-enteric prolongation of gastrointestinal transit times and an altered caecal pH profile. Academic Article uri icon

Overview

abstract

  • AIMS/HYPOTHESIS: We hypothesised that type 1 diabetic patients with established diabetic sensorimotor polyneuropathy (DSPN) would have segmental and/or pan-enteric dysmotility in comparison to healthy age-matched controls. We aimed to investigate the co-relationships between gastrointestinal function, degree of DSPN and clinical symptoms. METHODS: An observational comparison was made between 48 patients with DSPN (39 men, mean age 50 years, range 29-71 years), representing the baseline data of an ongoing clinical trial (representing a secondary analysis of baseline data collected from an ongoing double-blind randomised controlled trial investigating the neuroprotective effects of liraglutide) and 41 healthy participants (16 men, mean age 49 years, range 30-78) who underwent a standardised wireless motility capsule test to assess gastrointestinal transit. In patients, vibration thresholds, the Michigan Neuropathy Screening Instrument and Patient Assessment of Upper Gastrointestinal Symptom questionnaires were recorded. RESULTS: Compared with healthy controls, patients showed prolonged gastric emptying (299 ± 289 vs 179 ± 49 min; p = 0.01), small bowel transit (289 ± 107 vs 224 ± 63 min; p = 0.001), colonic transit (2140, interquartile range [IQR] 1149-2799 min vs 1087, IQR 882-1650 min; p = 0.0001) and whole-gut transit time (2721, IQR 1196-3541 min vs 1475 (IQR 1278-2214) min; p < 0.0001). Patients also showed an increased fall in pH across the ileocaecal junction (-1.8 ± 0.4 vs -1.3 ± 0.4 pH; p < 0.0001), which was associated with prolonged colonic transit (r = 0.3, p = 0.001). Multivariable regression, controlling for sex, disease duration and glycaemic control, demonstrated an association between whole-gut transit time and total GCSI (p = 0.02). CONCLUSIONS/INTERPRETATION: Pan-enteric prolongation of gastrointestinal transit times and a more acidic caecal pH, which may represent heightened caecal fermentation, are present in patients with type 1 diabetes. The potential implication of delayed gastrointestinal transit on the bioavailability of nutrition and on pharmacotherapeutic and glycaemic control warrants further investigation. TRIAL REGISTRATION: EUDRA CT: 2013-004375-12.

publication date

  • January 20, 2017

Research

keywords

  • Cecum
  • Diabetes Mellitus, Type 1
  • Gastrointestinal Transit
  • Peripheral Nervous System Diseases

Identity

Scopus Document Identifier

  • 85009917891

Digital Object Identifier (DOI)

  • 10.1007/s00125-016-4199-6

PubMed ID

  • 28105520

Additional Document Info

volume

  • 60

issue

  • 4