Glesatinib Exhibits Antitumor Activity in Lung Cancer Models and Patients Harboring MET Exon 14 Mutations and Overcomes Mutation-mediated Resistance to Type I MET Inhibitors in Nonclinical Models.
Academic Article
Overview
abstract
Purpose: MET exon 14 deletion (MET ex14 del) mutations represent a novel class of non-small cell lung cancer (NSCLC) driver mutations. We evaluated glesatinib, a spectrum-selective MET inhibitor exhibiting a type II binding mode, in MET ex14 del-positive nonclinical models and NSCLC patients and assessed its ability to overcome resistance to type I MET inhibitors.Experimental Design: As most MET inhibitors in clinical development bind the active site with a type I binding mode, we investigated mechanisms of acquired resistance to each MET inhibitor class utilizing in vitro and in vivo models and in glesatinib clinical trials.Results: Glesatinib inhibited MET signaling, demonstrated marked regression of MET ex14 del-driven patient-derived xenografts, and demonstrated a durable RECIST partial response in a MET ex14 del mutation-positive patient enrolled on a glesatinib clinical trial. Prolonged treatment of nonclinical models with selected MET inhibitors resulted in differences in resistance kinetics and mutations within the MET activation loop (i.e., D1228N, Y1230C/H) that conferred resistance to type I MET inhibitors, but remained sensitive to glesatinib. In vivo models exhibiting MET ex14 del/A-loop double mutations and resistance to type I inhibitors exhibited a marked response to glesatinib. Finally, a MET ex14 del mutation-positive NSCLC patient who responded to crizotinib but later relapsed, demonstrated a mixed response to glesatinib including reduction in size of a MET Y1230H mutation-positive liver metastasis and concurrent loss of detection of this mutation in plasma DNA.Conclusions: Together, these data demonstrate that glesatinib exhibits a distinct mechanism of target inhibition and can overcome resistance to type I MET inhibitors. Clin Cancer Res; 23(21); 6661-72. ©2017 AACR .
publication date
published in
Research
keywords
Antineoplastic Agents
Benzeneacetamides
Carcinoma, Non-Small-Cell Lung
Drug Resistance, Neoplasm
Liver Neoplasms
Proto-Oncogene Proteins c-met
Pyridines
Identity
Scopus Document Identifier
Digital Object Identifier (DOI)
10.1158/1078-0432.CCR-17-1192
PubMed ID
Additional Document Info
has global citation frequency
volume
issue