Segmentation of 3-D High-Frequency Ultrasound Images of Human Lymph Nodes Using Graph Cut With Energy Functional Adapted to Local Intensity Distribution. Academic Article uri icon

Overview

abstract

  • Previous studies by our group have shown that 3-D high-frequency quantitative ultrasound (QUS) methods have the potential to differentiate metastatic lymph nodes (LNs) from cancer-free LNs dissected from human cancer patients. To successfully perform these methods inside the LN parenchyma (LNP), an automatic segmentation method is highly desired to exclude the surrounding thin layer of fat from QUS processing and accurately correct for ultrasound attenuation. In high-frequency ultrasound images of LNs, the intensity distribution of LNP and fat varies spatially because of acoustic attenuation and focusing effects. Thus, the intensity contrast between two object regions (e.g., LNP and fat) is also spatially varying. In our previous work, nested graph cut (GC) demonstrated its ability to simultaneously segment LNP, fat, and the outer phosphate-buffered saline bath even when some boundaries are lost because of acoustic attenuation and focusing effects. This paper describes a novel approach called GC with locally adaptive energy to further deal with spatially varying distributions of LNP and fat caused by inhomogeneous acoustic attenuation. The proposed method achieved Dice similarity coefficients of 0.937±0.035 when compared with expert manual segmentation on a representative data set consisting of 115 3-D LN images obtained from colorectal cancer patients.

publication date

  • August 9, 2017

Research

keywords

  • Imaging, Three-Dimensional
  • Lymph Nodes
  • Ultrasonography

Identity

PubMed Central ID

  • PMC5913754

Scopus Document Identifier

  • 85029009722

Digital Object Identifier (DOI)

  • 10.1109/TUFFC.2017.2737948

PubMed ID

  • 28796617

Additional Document Info

volume

  • 64

issue

  • 10