A New Volumetric Radiologic Method to Assess Indirect Decompression After Extreme Lateral Interbody Fusion Using High-Resolution Intraoperative Computed Tomography.
Academic Article
Overview
abstract
BACKGROUND: Two-dimensional radiographic methods have been proposed to evaluate the radiographic outcome after indirect decompression through extreme lateral interbody fusion (XLIF). However, the assessment of neural decompression in a single plane may underestimate the effect of indirect decompression on central canal and foraminal volumes. The present study aimed to assess the reliability and consistency of a novel 3-dimensional radiographic method that assesses neural decompression by volumetric analysis using a new generation of intraoperative fan-beam computed tomography scanner in patients undergoing XLIF. METHODS: Prospectively collected data from 7 patients (9 levels) undergoing XLIF was retrospectively analyzed. Three independent, blind raters using imaging analysis software performed volumetric measurements pre- and postoperatively to determine central canal and foraminal volumes. Intrarater and Interrater reliability tests were performed to assess the reliability of this novel volumetric method. RESULTS: The interrater reliability between the three raters ranged from 0.800 to 0.952, P < 0.0001. The test-retest analysis on a randomly selected subset of three patients showed good to excellent internal reliability (range of 0.78-1.00) for all 3 raters. There was a significant increase in mean volume ≈20% for right foramen, left foramen, and central canal volumes postoperatively (P = 0.0472; P = 0.0066; P = 0.0003, respectively). CONCLUSIONS: Here we demonstrate a new volumetric analysis technique that is feasible, reliable, and reproducible amongst independent raters for central canal and foraminal volumes in the lumbar spine using an intraoperative computed tomography scanner.