Global proteome and phosphoproteome dynamics indicate novel mechanisms of vitamin C induced dormancy in Mycobacterium smegmatis. Academic Article uri icon

Overview

abstract

  • UNLABELLED: Vitamin C has been found to affect mycobacteria in multiple ways, including increasing susceptibility to antimicrobial drugs, inducing dormancy, and having a bactericidal effect. However, the regulatory events mediating vitamin C related adaptations remain largely elusive. Ser/Thr/Tyr protein phosphorylation plays an important regulatory role in mycobacteria, contributing to environmental adaptation, including dormancy and drug resistance. This study utilised the model organism, Mycobacterium smegmatis, and TiO2 phosphopeptide enrichment combined with mass spectrometry-based proteomics methods to elucidate the mycobacterial signalling and regulatory response to sub-lethal concentrations of vitamin C. After initial validation of peptide spectra, 224 non-redundant phosphosites in 154 proteins were retained with high confidence. Data analysis revealed that 30 peptides were differentially phosphorylated with Vitamin C treatment, including novel phosphosites found on both PknG and GarA. Of these significant proteins, we validated 11 by parallel reaction monitoring of high-confidence phosphopeptides. Interestingly, 17/30 phosphopeptides were annotated as part of transmembrane proteins, suggesting that it is likely vitamin C triggers typical signal transduction events in which the protein periplasmic domain perceives environmental signals and the cytoplasmic domain is then phosphorylated. Finally, the diverse nature of phosphorylated proteins involved in signalling, transport, and carbohydrate biosynthesis indicates the extent of such regulatory phosphorylation events. BIOLOGICAL SIGNIFICANCE: Our findings provide new mechanistic insight into a coordinated network of signalling and regulatory responses to sub-lethal vitamin C in Mycobacterium smegmatis and provide evidence that vitamin C is able to act as a novel extracellular signalling molecule. Vitamin C treatment caused changes in both the proteome and phosphoproteome associated with response to oxidative stress, a shift in metabolic regulation and progression toward dormancy, as well as phospho-dependent activation of specific secretory pathways and activation of specific two component and Ser/Thr/Tyr protein kinase activities. This study confirms the potential of vitamin C as convenient means to study aspects of mycobacterial dormancy, including those regulated at post-translational level.

publication date

  • October 13, 2017

Research

keywords

  • Ascorbic Acid
  • Bacterial Proteins
  • Mycobacterium smegmatis
  • Phosphoproteins
  • Proteome
  • Proteomics

Identity

Scopus Document Identifier

  • 85031798518

Digital Object Identifier (DOI)

  • 10.1016/j.jprot.2017.10.006

PubMed ID

  • 29038038

Additional Document Info

volume

  • 180