Concordance Between Cerebrospinal Fluid Biomarkers with Alzheimer's Disease Pathology Between Three Independent Assay Platforms. Academic Article uri icon

Overview

abstract

  • BACKGROUND: To enhance the accuracy of clinical diagnosis for Alzheimer's disease (AD), pre-mortem biomarkers have become increasingly important for diagnosis and for participant recruitment in disease-specific treatment trials. Cerebrospinal fluid (CSF) biomarkers provide a low-cost alternative to positron emission tomography (PET) imaging for in vivo quantification of different AD pathological hallmarks in the brains of affected subjects; however, consensus around the best platform, most informative biomarker and correlations across different methodologies are controversial. OBJECTIVE: Assessing levels of Aβ-amyloid and tau species determined using three different versions of immunoassays, the current study explored the ability of CSF biomarkers to predict PET Aβ-amyloid (32 Aβ-amyloid-and 45 Aβ-amyloid+), as well as concordance between CSF biomarker levels and PET Aβ-amyloid imaging. METHODS: Prediction and concordance analyses were performed using a sub-cohort of 77 individuals (48 healthy controls, 15 with mild cognitive impairment, and 14 with AD) from the Australian Imaging Biomarker and Lifestyle study of aging. RESULTS: Across all three platforms, the T-tau/Aβ42 ratio biomarker had modestly higher correlation with SUVR/BeCKeT (ρ= 0.69-0.8) as compared with Aβ42 alone (ρ= 0.66-0.75). Differences in CSF biomarker levels between the PET Aβ-amyloid-and Aβ-amyloid+ groups were strongest for the Aβ42/Aβ40 and T-tau/Aβ42 ratios (p < 0.0001); however, comparison of predictive models for PET Aβ-amyloid showed no difference between Aβ42 alone and the T-tau/Aβ42 ratio. CONCLUSION: This study confirms strong concordance between CSF biomarkers and PET Aβ-amyloid status is independent of immunoassay platform, supporting their utility as biomarkers in clinical practice for the diagnosis of AD and for participant enrichment in clinical trials.

publication date

  • January 1, 2018

Research

keywords

  • Alzheimer Disease
  • Biomarkers

Identity

Scopus Document Identifier

  • 85036570563

Digital Object Identifier (DOI)

  • 10.3233/JAD-170128

PubMed ID

  • 29171991

Additional Document Info

volume

  • 61

issue

  • 1