S-Glutathionylation of p47phox sustains superoxide generation in activated neutrophils. Academic Article uri icon

Overview

abstract

  • Post-translational modifications (PTMs) induced conformational changes of proteins can cause their activation or inactivation. Neutrophils clear pathogen through phagocytosis and oxidative burst generation, while participate in inflammation through sustained and uncontrolled generation of ROS. In activated PMNs, cytosolic NOX-2 subunit p47phox following phosphorylation interacts with p67phox, p40phox and along with Rac2 translocate to the membrane. Phosphorylation of p47phox subunit occurs in both short spurts as well as sustained ROS generation, suggesting towards the unidentified molecular mechanism(s) driving these two diverse outcomes by various stimuli. The present study demonstrates that in PMA or NO treated neutrophils a subunit of NOX2, p47phox gets glutathionylated to sustain ROS generation along with a decrease in catalase, Grx-1 activity and change in GSH/GSSG ratio. Surprisingly, fMLP treated cells neither showed sustained ROS production nor glutathionylation of p47phox. S-Glutathionylation was always secondary to phosphorylation of p47phox and inhibition of glutathionylation did not alter phosphorylation but specifically impaired sustained ROS production. Interestingly, forced S-glutathionylation of p47phox converted the fMLP induced ROS generation into sustained release of ROS. We then identified the glutathionylation susceptible cysteine residues of p47phox by LC-MS/MS with IAM switch mapping. Site-directed mutagenesis of cysteine residues further mitigated p47phox S-glutathionylation. Thus, we demonstrate that p47phox S-glutathionylation plays an essential key role in the sustained ROS generation by human neutrophils.

publication date

  • December 2, 2017

Research

keywords

  • NADPH Oxidase 2
  • NADPH Oxidases
  • Neutrophil Activation
  • Neutrophils
  • Superoxides

Identity

Scopus Document Identifier

  • 85037649922

Digital Object Identifier (DOI)

  • 10.1016/j.bbamcr.2017.11.014

PubMed ID

  • 29195919

Additional Document Info

volume

  • 1865

issue

  • 2