Cancer Stem Cell Phenotypes in ER+ Breast Cancer Models Are Promoted by PELP1/AIB1 Complexes.
Academic Article
Overview
abstract
-
Proline, glutamic acid, leucine-rich protein 1 (PELP1) is overexpressed in approximately 80% of invasive breast tumors. PELP1 dynamically shuttles between the nucleus and cytoplasm, but is primarily nuclear in normal breast tissue. However, altered localization of PELP1 to the cytoplasm is an oncogenic event that promotes breast cancer initiation and progression. Herein, interacting partners unique to cytoplasmic PELP1 and the mechanisms by which these interactions promote oncogenic PELP1 signaling were sought. AIB1 (amplified in breast cancer 1; also known as SRC-3 or NCOA3) was identified as a novel binding partner of cytoplasmic PELP1 in both estrogen receptor-positive (ER+) and ER-negative cell lines. Cytoplasmic PELP1 expression elevated basal phosphorylation levels (i.e., activation) of AIB1 at Thr24, enhanced ALDH+ tumorsphere formation, and upregulated specific target genes independently of hormone stimulation. Direct manipulation of AIB1 levels using shRNA abrogated cytoplasmic PELP1-induced tumorsphere formation and downregulated cytoplasmic PELP1-specific target genes. SI-2, an AIB1 inhibitor, limited the PELP1/AIB1 interaction and decreased cytoplasmic PELP1-induced tumorsphere formation. Similar results were observed in a murine-derived MMTV-AIB1 tumor cell line. Furthermore, in vivo syngeneic tumor studies revealed that PELP1 knockdown resulted in increased survival of tumor-bearing mice as compared with mice injected with control cells.Implications: These data demonstrate that cytoplasmic PELP1/AIB1-containing complexes function to promote advanced cancer phenotypes, including outgrowth of stem-like cells, associated with estrogen-independent breast cancer progression. Mol Cancer Res; 16(4); 707-19. ©2018 AACR.
publication date
published in
Research
keywords
-
Breast Neoplasms
-
Co-Repressor Proteins
-
Cytoplasm
-
Neoplastic Stem Cells
-
Nuclear Receptor Coactivator 3
-
Receptors, Estrogen
-
Transcription Factors
Identity
PubMed Central ID
Scopus Document Identifier
Digital Object Identifier (DOI)
-
10.1158/1541-7786.MCR-17-0598
PubMed ID
Additional Document Info
has global citation frequency
volume
issue