Suppression of gluconeogenic gene transcription by SIK1-induced ubiquitination and degradation of CRTC1.
Academic Article
Overview
abstract
CRTCs are a group of three transcriptional coactivators required for CREB-dependent transcription. CREB and CRTCs are critically involved in the regulation of various biological processes such as cell proliferation, metabolism, learning and memory. However, whether CRTC1 efficiently induces gluconeogenic gene expression and how CRTC1 is regulated by upstream kinase SIK1 remain to be understood. In this work, we demonstrated SIK1-induced phosphorylation, ubiquitination and degradation of CRTC1 in the context of the regulation of gluconeogenesis. CRTC1 protein was destabilized by SIK1 but not SIK2 or SIK3. This effect was likely mediated by phosphorylation at S155, S167, S188 and S346 residues of CRTC1 followed by K48-linked polyubiquitination and proteasomal degradation. Expression of gluconeogenic genes such as that coding for phosphoenolpyruvate carboxykinase was stimulated by CRTC1, but suppressed by SIK1. Depletion of CRTC1 protein also blocked forskolin-induced gluconeogenic gene expression, knockdown or pharmaceutical inhibition of SIK1 had the opposite effect. Finally, SIK1-induced ubiquitination of CRTC1 was mediated by RFWD2 ubiquitin ligase at a site not equivalent to K628 in CRTC2. Taken together, our work reveals a regulatory circuit in which SIK1 suppresses gluconeogenic gene transcription by inducing ubiquitination and degradation of CRTC1. Our findings have implications in the development of new antihyperglycemic agents.