A method for inferring regional origins of neurodegeneration. Academic Article uri icon

Overview

abstract

  • Alzheimer's disease, the most common form of dementia, is characterized by the emergence and spread of senile plaques and neurofibrillary tangles, causing widespread neurodegeneration. Though the progression of Alzheimer's disease is considered to be stereotyped, the significant variability within clinical populations obscures this interpretation on the individual level. Of particular clinical importance is understanding where exactly pathology, e.g. tau, emerges in each patient and how the incipient atrophy pattern relates to future spread of disease. Here we demonstrate a newly developed graph theoretical method of inferring prior disease states in patients with Alzheimer's disease and mild cognitive impairment using an established network diffusion model and an L1-penalized optimization algorithm. Although the 'seeds' of origin using our inference method successfully reproduce known trends in Alzheimer's disease staging on a population level, we observed that the high degree of heterogeneity between patients at baseline is also reflected in their seeds. Additionally, the individualized seeds are significantly more predictive of future atrophy than a single seed placed at the hippocampus. Our findings illustrate that understanding where disease originates in individuals is critical to determining how it progresses and that our method allows us to infer early stages of disease from atrophy patterns observed at diagnosis.

publication date

  • March 1, 2018

Research

keywords

  • Alzheimer Disease
  • Cognitive Dysfunction
  • White Matter

Identity

PubMed Central ID

  • PMC5837438

Scopus Document Identifier

  • 85042911375

Digital Object Identifier (DOI)

  • 10.1093/brain/awx371

PubMed ID

  • 29409009

Additional Document Info

volume

  • 141

issue

  • 3